
Introduction to Internet of Things
Prof. Sudip Misra

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture - 07
Basics of IoT Networking- Part- III

So, we continue with our discussions about the different protocols that are used for

communication and networking of internet of things.

(Refer Slide Time: 00:34)

So, the next protocol that we are going to cover is the CoAP protocol and the full form of

which is Constrained Application Protocol.

(Refer Slide Time: 00:37)

This protocol is particularly used for web transfer and by web transfer I mean very

similar to the HTTP, but web transfer in the context of constrained networks resource,

constrained networks with nodes which are constrained with respect to different

resources, such as limited energy or power supply, limited computational resources,

limited communication resource, limited bandwidth environment and so on.

So, CoAP is sort of like an HTTP equivalent that can be used in the context of IoT and

the other thing that we have to understand is CoAP is strictly speaking a session layer

protocol. However, we can also contribute as an application layer protocol as well. So, in

IoT particularly when we taking to consideration the different applications involving

machine to machine communication for example, smart energy, smart environment you

know building automation and this kind of applications CoAP comes out to be very

much useful.

CoAP is based on a request response model. So, basically you know it will very clear

shortly about how CoAP works. So, at this point you know you have to understand that

there are two endpoints, the source and the destination and a request is sent and a

response is received back from the in the other end point and that means, the destination.

So, this is how CoAP works. So, there is sort of like a client server, kind of interaction

that goes on. So, there is the datagram that is sent from one endpoint to another and that

basically, it is an asynchronous kind of communication and it also works on top of in the

transport protocol UDP.

(Refer Slide Time: 02:55)

So, basically CoAP, we have to keep in mind that CoAP works on top of UDP. So, this

particular protocol is based on IETF RESTful Environment Working Group. So, there is

architecture, restful architecture and these people who have to post the restful

architecture, they have proposed the CoAP protocol. So, it is basically used sort of like a

lightweight equivalent of the HTTP and it is a standard REST. So, let us go back to the

rest protocol first.

So, REST is a standard interface between the HTTP clients and servers, but this REST

protocol is useful where there is no resource limitation because you know this is quite

resource hungry kind of protocol which communes lot of resource. REST basically is not

good for constrained environments like IoT.

So, CoAP is sort of like a protocol which is a lightweight equivalent of the rest

architecture and rest protocol and it helps to communicate with under low power

constraints.

(Refer Slide Time: 04:19)

So, this is how CoAP works. So, as I was telling you that it is a session layer protocol or

even we can think of it as an application layer protocol. So, it basically works on top of

the transport layer. So, session layer or application layer are on top of the transport layer

and the transport layer protocol that is used in the context of CoAP is that UDP. So,

CoAP basically has two main sub-layers, one is the messaging sub-layer and the other

one is the request response sub-layer and I will show you pictorially how it looks like

shortly.

So, in summary actually at a high level, we can think of the messaging sub-layer to be

responsible for functionality, such as reliability and duplication of avoidance of

duplication of messages while the request response sub-layer is responsible for the

communication, exact communication that is going to take place, the request being sent

and the response being received. So, these are two main sub-layers that are there in the

CoAP protocol or the CoAP architecture more specifically. So, there are different

messaging modes for CoAP, one is the confirmable mode, the second is the non-

confirmable mode, the third is the piggyback mode and the fourth is the separate.

(Refer Slide Time: 05:41)

So, as I was telling you in the protocol stack in terms of the layered architecture, CoAP is

a protocol of the session layer. Some can also think of it you know in some cases we try

to avoid the session layer. So, in that case, we can think of CoAP to be merged with the

application layer, but if session layer is considered, it is a protocol of the session layer.

So, session layer means that it lies between the transport layer and the application layer.

So, at the transport layer, we have the UDP protocol and different applications being run

in the application layer and CoAP basically sits in between. So, we have two sub-layers,

one is the request response and the other one is the messages. Messages is mostly

concerned about the reliability in sharing, reliability of the network, reliability in

communication whereas, request response is more to do with the exact communication in

terms of sending a request and getting a response back.

(Refer Slide Time: 06:49)

So, this is what I was mentioning earlier. So, we have different types of messages that

are used in CoAP. The first one is the confirmable message, the second is the non-

confirmable message, the third is the piggyback message and the fourth is the separate

message.

(Refer Slide Time: 07:11)

So, basically when we look at CoAP confirmable message, this is how it works. So, we

have CoAP is basically a connection between the client and the server in a resource

constraint environment. So, what happens is a message is sent and an acknowledgement

is received in the case of a confirmable message.

(Refer Slide Time: 07:48)

So, this message basically you know it gets an acknowledgement back. So, it is a

confirmable message and then, for non-confirmable message, there is no

acknowledgement from the server and then, we have the piggyback message which is

used for a client server direct communication where the server sends its response directly

after receiving the message. So, that basically you know what happens is along with the

acknowledgement message, the data is also sent, the response is also sent in the case of

piggyback messages.

And in the case of the separate mode, it is used when the server response comes in a

message separate from the acknowledgement and that basically may take some time to

be sent to the server, this particular message might you know because it is coming

separate from the acknowledgement. May be acknowledgement might be received and

the message might be received after a rewind back.

So, no sorry find thereafter I am sorry and so, similar to HTTP code basically utilizes

different functionalities, such as get functionality, get message, put message, push

message, delete message etcetera. So, basically get is for retrieval of some data, put is for

creation. So, you want to put some data or some message into the repository, so in that

case push or put the server. So, in that case that put message is used and then, we have

the update for that push is used and the delete message is for deletion purpose.

(Refer Slide Time: 09:30)

So, we have already looked at how the confirmable and the non-confirmable message

request response looks like. So, let us now look at pictorially how the piggyback

message request response model looks like. So, here basically as we can see first a

message is sent in piggyback in contrast to the previous two models. That means, the

confirmable and the non-confirmable models, rather the confirmable model. So, what we

have vary as we can see the data is basically piggybacked along with the

acknowledgement message. So, this is how the piggyback message request response

model functions.

Separate message, we have a message being sent and acknowledgement being received

and there is a wait period after which the data is going to be sent separately from the

server to the client and corresponding to that the client is going to send an

acknowledgement back to the server.

(Refer Slide Time: 10:52)

So, this is how separate messages look like so these basically CoAP as a whole and these

different message types, they together help to induce the overhead and the parsing

complexity of the network. So, there are different types of discovery of resources that are

supported by CoAP and we are going to go through them little bit further.

(Refer Slide Time: 11:23)

So, but so we now start with the XMPP protocol which is the next protocol to be

discussed.

(Refer Slide Time: 11:34)

The full form of XMPP is Extensible Messaging and Presence Protocol. So, it is a

message oriented middleware that is based on XML, whereas XML is particularly used

for unstructured data. XMPP is useful for real time exchange of structured data and it is

an open standard protocol.

(Refer Slide Time: 12:03)

So, XMPP uses a client server architecture, it uses a decentralized model meaning that

there is no server that is involved in the message transfer and it provides facilities for

discovery of messages which are residing locally or globally across the network and the

availability information of these services.

So, as we can now basically think about it, so it is well suited for cloud computing

environments, where virtual machines networks and firewalls are involved and would

otherwise present obstacles to the alternative service discovery and message based

solutions. So, you know think of it this way that with the help of XMPP, we can do

things very similar to like pin protocol. So, in the case of pin, basically when we have the

involvement of firewalls etcetera, so pin cannot be used as such, right.

So, in this particular case, in the case of XMPP, it basically removes all these constraints,

these barriers for having the discovery of the services and if it is the discovery of

services locally, then it is no problem, but if it is across the network and there is a

firewall in between, then XMPP can still work.

(Refer Slide Time: 13:34)

So, some of these highlights of the XMPP protocol, it is based on the concept of

decentralization where there is no central server and then, you know everybody can run

the XMPP server theoretically and it is based on open standard. So, there is no

involvement of royalties or granting permissions to implement the XMPP specifications,

different security features that the standard ones, such as authentication, encryption,

etcetera, can be implemented using XMPP on top of XMPP rather and XMPP also offers

flexibility in terms of supporting interoperability between different systems, different

devices, different protocols, and so on.

(Refer Slide Time: 14:26)

So, consequently I was giving you the analogy with the traditional pin protocol that is

used for internet and here we are trying to have something similar, but you know it is bit

different in this particular manner. So, it is now if you look at this particular figure what

we see is with the help of XMPP, not only it is possible to communicate with other

servers like in the case of the traditional internet, but also with other messaging platform

such as ICQ, AIM, Yahoo and so on. So, this is also possible. So, not only that this is

possible, but additionally it is also possible to communicate with other intranets, other

intranets.

(Refer Slide Time: 12:25)

So, XMPP basically helps in doing this. There are few core XMPP technologies, one is

the core technology which provides information about the core XMPP technologies for

XML streaming, then we have jingle which is used for multimedia signaling with the

help of voice you know wherever there is multimedia resources, such as voice, video, file

transfer etcetera, it can help in signaling jingle multi-user chat.

It is a flexible technology which can be used for multi-party communication. Pub sub is

Publish Subscriber. Publish subscribe model and publish basically alerts, this pub sub

model basically alerts and notifies for data syndication and the BOSH technology. It is

used for HTTP, binding for XMPP wherever there is required meant for HTTP binding

when using XMPP, this can be used.

(Refer Slide Time: 16:23)

There are different weaknesses as well of XMPP protocol. It does not support QOS, text

based communication including you know Higher Network Overheads are involved in

the use of XMPP. So, it is not good for text based communication.

(Refer Slide Time: 16:56)

Binary data must be first encoded to base 64 before it can be transmitted. The different

applications that use XMPP publish subscribe systems, pub sub systems, then signaling

for voice video file transfer, gaming applications, IoT applications such as smart, grid,

social networking and so on.

So, with this we have come to the end of two order protocols. We have discussed that

two order protocols. So, XMPP is a protocol that is very useful. So, we have discussed

about the CoAP protocol first with the session layer protocol which is useful for use in a

similar kind of platform, where rest is required for communication between the client

and the server. So, CoAP protocol and then, we have discussed about the XMPP

protocol.

Thank you.

